Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 34(8): 1705-1717.e6, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38574729

RESUMO

Plants establish symbiotic associations with arbuscular mycorrhizal fungi (AMF) to facilitate nutrient uptake, particularly in nutrient-limited conditions. This partnership is rooted in the plant's ability to recognize fungal signaling molecules, such as chitooligosaccharides (chitin) and lipo-chitooligosaccharides. In the legume Medicago truncatula, chitooligosaccharides trigger both symbiotic and immune responses via the same lysin-motif-receptor-like kinases (LysM-RLKs), notably CERK1 and LYR4. The nature of plant-fungal engagement is opposite according to the outcomes of immunity or symbiosis signaling, and as such, discrimination is necessary, which is challenged by the dual roles of CERK1/LYR4 in both processes. Here, we describe a LysM-RLK, LYK8, that is functionally redundant with CERK1 for mycorrhizal colonization but is not involved in chitooligosaccharides-induced immunity. Genetic mutation of both LYK8 and CERK1 blocks chitooligosaccharides-triggered symbiosis signaling, as well as mycorrhizal colonization, but shows no further impact on immunity signaling triggered by chitooligosaccharides, compared with the mutation of CERK1 alone. LYK8 interacts with CERK1 and forms a receptor complex that appears essential for chitooligosaccharides activation of symbiosis signaling, with the lyk8/cerk1 double mutant recapitulating the impact of mutations in the symbiosis signaling pathway. We conclude that this novel receptor complex allows chitooligosaccharides activation specifically of symbiosis signaling and helps the plant to differentiate between activation of these opposing signaling processes.


Assuntos
Quitina , Quitosana , Medicago truncatula , Micorrizas , Proteínas de Plantas , Simbiose , Micorrizas/fisiologia , Quitina/metabolismo , Medicago truncatula/microbiologia , Medicago truncatula/metabolismo , Medicago truncatula/imunologia , Medicago truncatula/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Imunidade Vegetal , Oligossacarídeos/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo
2.
Glycobiology ; 34(2)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38070184

RESUMO

Free polymannose-type oligosaccharides (fOS) are processed by cytosolic enzymes to generate Man5GlcNAc which is transferred to lysosomes and degraded. Lysosomal fOS import was demonstrated in vitro but is poorly characterized in part due to lack of convenient substrates. As chitooligosaccharides (COS, oligomers ß1,4-linked GlcNAc) block [3H]Man5GlcNAc transport into lysosomes, we asked if COS are themselves transported and if so, can they be chemically modified to generate fluorescent substrates. We show that COS are degraded by lysosomal hydrolases to generate GlcNAc, and robust ATP-dependent transport of [3H]COS2/4 di and tetrasaccharides into intact rat liver lysosomes was observed only after blocking lysosomal [3H]GlcNAc efflux with cytochalasin B. As oligosaccharides with unmodified reducing termini are the most efficient inhibitors of [3H]COS2/4 and [3H]Man5GlcNAc transport, the non-reducing GlcNAc residue of COS2-4 was de-N-acetylated using Sinorhizobium meliloti NodB, and the resulting amine substituted with rhodamine B (RB) to yield RB-COS2-4. The fluorescent compounds inhibit [3H]Man5GlcNAc transport and display temperature-sensitive, ATP-dependent transport into a sedimentable compartment that is ruptured with the lysosomotropic agent L-methyl methionine ester. Once in this compartment, RB-COS3 is converted to RB-COS2 further identifying it as the lysosomal compartment. RB-COS2/3 and [3H]Man5GlcNAc transports are blocked similarly by competing sugars, and are partially inhibited by the vacuolar ATPase inhibitor bafilomycin and high concentrations of the P-type ATPase inhibitor orthovanadate. These data show that Man5GlcNAc, COS2/4 and RB-COS2/3 are transported into lysosomes by the same or closely related mechanism and demonstrate the utility of COS modified at their non-reducing terminus to study lysosomal oligosaccharide transport.


Assuntos
Fígado , Lisossomos , Ratos , Animais , Fígado/metabolismo , Lisossomos/metabolismo , Oligossacarídeos/metabolismo , Transporte Biológico , Trifosfato de Adenosina/metabolismo
3.
Chemistry ; 29(46): e202301555, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37294058

RESUMO

Herein, we describe the efficient gram-scale synthesis of α2,3- and α2,6-sialyllactose oligosaccharides as well as mimetics from N-acyl mannosamines and lactose in metabolically engineered bacterial cells grown at high cell density. We designed new Escherichia coli strains co-expressing sialic acid synthase and N-acylneuraminate cytidylyltransferase from Campylobacter jejuni together with the α2,3-sialyltransferase from Neisseria meningitidis or the α2,6-sialyltransferase from Photobacterium sp. JT-ISH-224. Using their mannose transporter, these new strains actively internalized N-acetylmannosamine (ManNAc) and its N-propanoyl (N-Prop), N-butanoyl (N-But) and N-phenylacetyl (N-PhAc) analogs and converted them into the corresponding sialylated oligosaccharides, with overall yields between 10 % and 39 % (200-700 mg.L-1 of culture). The three α2,6-sialyllactose analogs showed similar binding affinity for Sambucus nigra SNA-I lectin as for the natural oligosaccharide. They also proved to be stable competitive inhibitors of Vibrio cholerae neuraminidase. These N-acyl sialosides therefore hold promise for the development of anti-adhesion therapy against influenza viral infections.


Assuntos
Lactose , Neuraminidase , Neuraminidase/metabolismo , Escherichia coli/metabolismo , Sialiltransferases/metabolismo , Oligossacarídeos/química
4.
Plant Cell Physiol ; 64(7): 746-757, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37098213

RESUMO

Lysin motif receptor-like kinases (LysM-RLKs) are involved in the perception of chitooligosaccharides (COs) and related lipochitooligosaccharides (LCOs) in plants. Expansion and divergence of the gene family during evolution have led to various roles in symbiosis and defense. By studying proteins of the LYR-IA subclass of LysM-RLKs of the Poaceae, we show here that they are high-affinity LCO-binding proteins with a lower affinity for COs, consistent with a role in LCO perception to establish arbuscular mycorrhiza (AM). In Papilionoid legumes, whole-genome duplication has resulted in two LYR-IA paralogs, MtLYR1 and MtNFP in Medicago truncatula, with MtNFP playing an essential role in root nodule symbiosis with nitrogen-fixing rhizobia. We show that MtLYR1 has retained the ancestral LCO-binding characteristic and is dispensable for AM. Domain swapping between the three LysMs of MtNFP and MtLYR1 and mutagenesis in MtLYR1 suggest that the MtLYR1 LCO-binding site is on the second LysM and that divergence in MtNFP led to better nodulation, but surprisingly with decreased LCO binding. These results suggest that divergence of the LCO-binding site has been important for the evolution of a role of MtNFP in nodulation with rhizobia.


Assuntos
Medicago truncatula , Micorrizas , Medicago truncatula/genética , Medicago truncatula/metabolismo , Proteínas de Plantas/metabolismo , Micorrizas/metabolismo , Simbiose/genética , Quitina/metabolismo
5.
Chemistry ; 29(6): e202202991, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36256497

RESUMO

Soluble fragments of peptidoglycan called muropeptides are released from the cell wall of bacteria as part of their metabolism or as a result of biological stresses. These compounds trigger immune responses in mammals and plants. In bacteria, they play a major role in the induction of antibiotic resistance. The development of efficient methods to produce muropeptides is, therefore, desirable both to address their mechanism of action and to design new antibacterial and immunostimulant agents. Herein, we engineered the peptidoglycan recycling pathway of Escherichia coli to produce N-acetyl-ß-D-glucosaminyl-(1→4)-1,6-anhydro-N-acetyl-ß-D-muramic acid (GlcNAc-anhMurNAc), a common precursor of Gram-negative and Gram-positive muropeptides. Inactivation of the hexosaminidase nagZ gene allowed the efficient production of this key disaccharide, providing access to Gram-positive muropeptides through subsequent chemical peptide conjugation. E. coli strains deficient in both NagZ hexosaminidase and amidase activities further enabled the in vivo production of Gram-negative muropeptides containing meso-diaminopimelic acid, a rarely available amino acid.


Assuntos
Escherichia coli , Peptidoglicano , Escherichia coli/metabolismo , Peptidoglicano/metabolismo , Bactérias/metabolismo , Parede Celular/metabolismo , Hexosaminidases
6.
mSystems ; 7(6): e0105222, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36453934

RESUMO

Lipo-chitooligosaccharides (LCOs) are historically known for their role as microbial-derived signaling molecules that shape plant symbiosis with beneficial rhizobia or mycorrhizal fungi. Recent studies showing that LCOs are widespread across the fungal kingdom have raised questions about the ecological function of these compounds in organisms that do not form symbiotic relationships with plants. To elucidate the ecological function of these compounds, we investigate the metabolomic response of the ubiquitous human pathogen Aspergillus fumigatus to LCOs. Our metabolomics data revealed that exogenous application of various types of LCOs to A. fumigatus resulted in significant shifts in the fungal metabolic profile, with marked changes in the production of specialized metabolites known to mediate ecological interactions. Using network analyses, we identify specific types of LCOs with the most significant effect on the abundance of known metabolites. Extracts of several LCO-induced metabolic profiles significantly impact the growth rates of diverse bacterial species. These findings suggest that LCOs may play an important role in the competitive dynamics of non-plant-symbiotic fungi and bacteria. This study identifies specific metabolomic profiles induced by these ubiquitously produced chemicals and creates a foundation for future studies into the potential roles of LCOs as modulators of interkingdom competition. IMPORTANCE The activation of silent biosynthetic gene clusters (BGC) for the identification and characterization of novel fungal secondary metabolites is a perpetual motion in natural product discoveries. Here, we demonstrated that one of the best-studied symbiosis signaling compounds, lipo-chitooligosaccharides (LCOs), play a role in activating some of these BGCs, resulting in the production of known, putative, and unknown metabolites with biological activities. This collection of metabolites induced by LCOs differentially modulate bacterial growth, while the LCO standards do not convey the same effect. These findings create a paradigm shift showing that LCOs have a more prominent role outside of host recognition of symbiotic microbes. Importantly, our work demonstrates that fungi use LCOs to produce a variety of metabolites with biological activity, which can be a potential source of bio-stimulants, pesticides, or pharmaceuticals.


Assuntos
Quitosana , Micorrizas , Humanos , Quitina , Quitosana/farmacologia , Oligossacarídeos/farmacologia
7.
Nat Commun ; 13(1): 5577, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36151080

RESUMO

In the barley ß-D-glucan glucohydrolase, a glycoside hydrolase family 3 (GH3) enzyme, the Trp286/Trp434 clamp ensures ß-D-glucosides binding, which is fundamental for substrate hydrolysis during plant growth and development. We employ mutagenesis, high-resolution X-ray crystallography, and multi-scale molecular modelling methods to examine the binding and conformational behaviour of isomeric ß-D-glucosides during substrate-product assisted processive catalysis that operates in GH3 hydrolases. Enzyme kinetics reveals that the W434H mutant retains broad specificity, while W434A behaves as a strict (1,3)-ß-D-glucosidase. Investigations of reactant movements on the nanoscale reveal that processivity is sensitive to mutation-specific alterations of the tryptophan clamp. While wild-type and W434H utilise a lateral cavity for glucose displacement and sliding of (1,3)-linked hydrolytic products through the catalytic site without dissociation, consistent with their high hydrolytic rates, W434A does not adopt processive catalysis. Phylogenomic analyses of GH3 hydrolases disclose the evolutionary advantage of the tryptophan clamp that confers broad specificity, high catalytic efficiency, and processivity.


Assuntos
Glicosídeo Hidrolases , Triptofano , Cristalografia por Raios X , Glucose , Glucosidases/química , Glucosídeos , Glicosídeo Hidrolases/metabolismo , Glicosídeos , Cinética , Plantas/metabolismo , Especificidade por Substrato
8.
Front Fungal Biol ; 3: 808578, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37746234

RESUMO

The role of lipo-chitooligosaccharides (LCOs) as signaling molecules that mediate the establishment of symbiotic relationships between fungi and plants is being redefined. New evidence suggests that the production of these molecular signals may be more of a common trait in fungi than what was previously thought. LCOs affect different aspects of growth and development in fungi. For the ectomycorrhizal forming fungi, Laccaria bicolor, the production and effects of LCOs have always been studied with a symbiotic plant partner; however, there is still no scientific evidence describing the effects that these molecules have on this organism. Here, we explored the physiological, molecular, and metabolomic changes in L. bicolor when grown in the presence of exogenous sulfated and non-sulfated LCOs, as well as the chitooligomers, chitotetraose (CO4), and chitooctaose (CO8). Physiological data from 21 days post-induction showed reduced fungal growth in response to CO and LCO treatments compared to solvent controls. The underlying molecular changes were interrogated by proteomics, which revealed substantial alterations to biological processes related to growth and development. Moreover, metabolite data showed that LCOs and COs caused a downregulation of organic acids, sugars, and fatty acids. At the same time, exposure to LCOs resulted in the overproduction of lactic acid in L. bicolor. Altogether, these results suggest that these signals might be fungistatic compounds and contribute to current research efforts investigating the emerging impacts of these molecules on fungal growth and development.

9.
Chemistry ; 27(70): 17637-17646, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34633724

RESUMO

Chitin and peptidoglycan fragments are well recognized as pathogen associated molecular patterns (PAMPs). Long-chain oligosaccharides of ß(1→4)-linked N-acetyl-D-glucosamine (GlcNAc) units indeed activate plants and mammals innate immune system. However, the mechanisms underlying PAMPs perception by lysine motif (LysM) domain receptors remain largely unknown because of insufficient availability of high-affinity molecular probes. Here, we report a two-enzyme cascade to synthesize long-chain ß(1→4)-linked GlcNAc oligomers. Expression of the D52S mutant of hen egg-white lysozyme (HEWL) in Pichia pastoris at 52 mg L-1 provided a new glycosynthase catalyzing efficient polymerization of α-chitintriosyl fluoride. Selective N-deacetylation at the non-reducing unit of the glycosyl fluoride donor by Sinorhizobium meliloti NodB chitin-N-deacetylase abolished its ability to be polymerized by the glycosynthase but not to be transferred onto an acceptor. Using NodB and D52S HEWL in a one-pot cascade reaction allowed the synthesis on a milligram scale of chitin hexa-, hepta- and octasaccharides with yields up to 65 % and a perfect control over their size.


Assuntos
Quitina , Oligossacarídeos , Animais , Glucosamina , Peptidoglicano
10.
Mar Drugs ; 19(6)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072871

RESUMO

Chitin oligosaccharides (COs) hold high promise as organic fertilizers in the ongoing agro-ecological transition. Short- and long-chain COs can contribute to the establishment of symbiotic associations between plants and microorganisms, facilitating the uptake of soil nutrients by host plants. Long-chain COs trigger plant innate immunity. A fine investigation of these different signaling pathways requires improving the access to high-purity COs. Here, we used the response surface methodology to optimize the production of COs by enzymatic hydrolysis of water-soluble chitin (WSC) with hen egg-white lysozyme. The influence of WSC concentration, its acetylation degree, and the reaction time course were modelled using a Box-Behnken design. Under optimized conditions, water-soluble COs up to the nonasaccharide were formed in 51% yield and purified to homogeneity. This straightforward approach opens new avenues to determine the complex roles of COs in plants.


Assuntos
Quitina/química , Muramidase/química , Oligossacarídeos/química , Acetilação , Hidrólise
11.
J Exp Bot ; 72(10): 3821-3834, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33675231

RESUMO

Lipo-chitooligosaccharides (LCOs) were originally found as symbiotic signals called Nod Factors (Nod-LCOs) controlling the nodulation of legumes by rhizobia. More recently, LCOs were also found in symbiotic fungi and, more surprisingly, very widely in the kingdom Fungi, including in saprophytic and pathogenic fungi. The LCO-V(C18:1, fucosylated/methyl fucosylated), hereafter called Fung-LCOs, are the LCO structures most commonly found in fungi. This raises the question of how legume plants such as Medicago truncatula can discriminate between Nod-LCOs and Fung-LCOs. To address this question, we performed a genome-wide association study on 173 natural accessions of M. truncatula, using a root branching phenotype and a newly developed local score approach. Both Nod-LCOs and Fung-LCOs stimulated root branching in most accessions, but the root responses to these two types of LCO molecules were not correlated. In addition, the heritability of the root response was higher for Nod-LCOs than for Fung-LCOs. We identified 123 loci for Nod-LCO and 71 for Fung-LCO responses, of which only one was common. This suggests that Nod-LCOs and Fung-LCOs both control root branching but use different molecular mechanisms. The tighter genetic constraint of the root response to Fung-LCOs possibly reflects the ancestral origin of the biological activity of these molecules.


Assuntos
Medicago truncatula , Micorrizas , Quitina/análogos & derivados , Quitosana , Estudo de Associação Genômica Ampla , Lipopolissacarídeos , Medicago truncatula/genética , Oligossacarídeos , Transdução de Sinais , Simbiose
12.
Nat Commun ; 11(1): 3897, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753587

RESUMO

Lipo-chitooligosaccharides (LCOs) are signaling molecules produced by rhizobial bacteria that trigger the nodulation process in legumes, and by some fungi that also establish symbiotic relationships with plants, notably the arbuscular and ecto mycorrhizal fungi. Here, we show that many other fungi also produce LCOs. We tested 59 species representing most fungal phyla, and found that 53 species produce LCOs that can be detected by functional assays and/or by mass spectroscopy. LCO treatment affects spore germination, branching of hyphae, pseudohyphal growth, and transcription in non-symbiotic fungi from the Ascomycete and Basidiomycete phyla. Our findings suggest that LCO production is common among fungi, and LCOs may function as signals regulating fungal growth and development.


Assuntos
Quitina/análogos & derivados , Quitina/metabolismo , Fungos/crescimento & desenvolvimento , Fungos/metabolismo , Transdução de Sinais/fisiologia , Ascomicetos/crescimento & desenvolvimento , Basidiomycota/crescimento & desenvolvimento , Quitosana , Ecologia , Ácidos Graxos/metabolismo , Micorrizas/fisiologia , Oligossacarídeos , Rhizobium/metabolismo , Esporos Fúngicos/crescimento & desenvolvimento , Simbiose/fisiologia
13.
Science ; 369(6504): 663-670, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32764065

RESUMO

Plants evolved lysine motif (LysM) receptors to recognize and parse microbial elicitors and drive intracellular signaling to limit or facilitate microbial colonization. We investigated how chitin and nodulation (Nod) factor receptors of Lotus japonicus initiate differential signaling of immunity or root nodule symbiosis. Two motifs in the LysM1 domains of these receptors determine specific recognition of ligands and discriminate between their in planta functions. These motifs define the ligand-binding site and make up the most structurally divergent regions in cognate Nod factor receptors. An adjacent motif modulates the specificity for Nod factor recognition and determines the selection of compatible rhizobial symbionts in legumes. We also identified how binding specificities in LysM receptors can be altered to facilitate Nod factor recognition and signaling from a chitin receptor, advancing the prospects of engineering rhizobial symbiosis into nonlegumes.


Assuntos
Lotus/enzimologia , Proteínas de Plantas/química , Proteínas Quinases/química , Motivos de Aminoácidos , Quitina/química , Ligantes , Domínios Proteicos
14.
Chem Sci ; 11(15): 3868-3877, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-34122855

RESUMO

Cellulose nanofibrils (CNF) are renewable bio-based materials with high specific area, which makes them ideal candidates for multiple emerging applications including for instance on-demand drug release. However, in-depth chemical and structural characterization of the CNF surface chemistry is still an open challenge, especially for low weight percentage of functionalization. This currently prevents the development of efficient, cost-effective and reproducible green synthetic routes and thus the widespread development of targeted and responsive drug-delivery CNF carriers. We show in this work how we use dynamic nuclear polarization (DNP) to overcome the sensitivity limitation of conventional solid-state NMR and gain insight into the surface chemistry of drug-functionalized TEMPO-oxidized cellulose nanofibrils. The DNP enhanced-NMR data can report unambiguously on the presence of trace amounts of TEMPO moieties and depolymerized cellulosic units in the starting material, as well as coupling agents on the CNFs surface (used in the heterogeneous reaction). This enables a precise estimation of the drug loading while differentiating adsorption from covalent bonding (∼1 wt% in our case) as opposed to other analytical techniques such as elemental analysis and conductometric titration that can neither detect the presence of coupling agents, nor differentiate unambiguously between adsorption and grafting. The approach, which does not rely on the use of 13C/15N enriched compounds, will be key to further develop efficient surface chemistry routes and has direct implication for the development of drug delivery applications both in terms of safety and dosage.

15.
New Phytol ; 225(1): 448-460, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31596956

RESUMO

Arbuscular mycorrhizal (AM) fungi greatly improve mineral uptake by host plants in nutrient-depleted soil and can intracellularly colonize root cortex cells in the vast majority of higher plants. However, AM fungi possess common fungal cell wall components such as chitin that can be recognized by plant chitin receptors to trigger immune responses, raising the question as to how AM fungi effectively evade chitin-triggered immune responses during symbiosis. In this study, we characterize a secreted lysin motif (LysM) effector identified from the model AM fungal species Rhizophagus irregularis, called RiSLM. RiSLM is one of the highest expressed effector proteins in intraradical mycelium during the symbiosis. In vitro binding assays show that RiSLM binds chitin-oligosaccharides and can protect fungal cell walls from chitinases. Moreover, RiSLM efficiently interferes with chitin-triggered immune responses, such as defence gene induction and reactive oxygen species production in Medicago truncatula. Although RiSLM also binds to symbiotic (lipo)chitooligosaccharides it does not interfere significantly with symbiotic signalling in Medicago. Host-induced gene silencing of RiSLM greatly reduces fungal colonization levels. Taken together, our results reveal a key role for AM fungal LysM effectors to subvert chitin-triggered immunity in symbiosis, pointing to a common role for LysM effectors in both symbiotic and pathogenic fungi.


Assuntos
Quitina/metabolismo , Lisina/metabolismo , Micorrizas/fisiologia , Imunidade Vegetal , Simbiose , Motivos de Aminoácidos , Sequência de Aminoácidos , Quitina/análogos & derivados , Quitinases/metabolismo , Quitosana , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Inativação Gênica , Genes Fúngicos , Glomeromycota/genética , Glomeromycota/fisiologia , Interações Hospedeiro-Patógeno , Micélio/metabolismo , Micorrizas/genética , Oligossacarídeos
16.
Nat Commun ; 10(1): 5047, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31695035

RESUMO

Plants associate with beneficial arbuscular mycorrhizal fungi facilitating nutrient acquisition. Arbuscular mycorrhizal fungi produce chitooligosaccharides (COs) and lipo-chitooligosaccharides (LCOs), that promote symbiosis signalling with resultant oscillations in nuclear-associated calcium. The activation of symbiosis signalling must be balanced with activation of immunity signalling, which in fungal interactions is promoted by COs resulting from the chitinaceous fungal cell wall. Here we demonstrate that COs ranging from CO4-CO8 can induce symbiosis signalling in Medicago truncatula. CO perception is a function of the receptor-like kinases MtCERK1 and LYR4, that activate both immunity and symbiosis signalling. A combination of LCOs and COs act synergistically to enhance symbiosis signalling and suppress immunity signalling and receptors involved in both CO and LCO perception are necessary for mycorrhizal establishment. We conclude that LCOs, when present in a mix with COs, drive a symbiotic outcome and this mix of signals is essential for arbuscular mycorrhizal establishment.


Assuntos
Quitina/análogos & derivados , Lipopolissacarídeos/metabolismo , Medicago truncatula/microbiologia , Micorrizas/fisiologia , Morte Celular , Parede Celular/metabolismo , Quitina/metabolismo , Quitina/farmacologia , Quitosana , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Medicago truncatula/efeitos dos fármacos , Medicago truncatula/genética , Medicago truncatula/imunologia , Oligossacarídeos/metabolismo , Imunidade Vegetal , Folhas de Planta , Proteínas de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Simbiose/efeitos dos fármacos , Simbiose/fisiologia , Nicotiana
17.
Bioconjug Chem ; 30(9): 2332-2339, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31403275

RESUMO

Carbohydrate-protein interactions trigger a wide range of biological signaling pathways, the mainstays of physiological and pathological processes. However, there are an incredible number of carbohydrate-binding proteins (CBPs) that remain to be identified and characterized. This study reports for the first time the covalent labeling of CBPs by triazinyl glycosides, a new and promising class of affinity-based glycoprobes. Mono- and bis-clickable triazinyl glycosides were efficiently synthesized from unprotected oligosaccharides (chitinpentaose and 2'-fucosyl-lactose) in a single step. These molecules allow the specific covalent labeling of chitin-oligosaccharide-binding proteins (wheat germ agglutinin WGA and Bc ChiA1 D202A, an inactivated chitinase) and fucosyl-binding lectin (UEA-I), respectively.


Assuntos
Glicosídeos/química , Receptores de Superfície Celular/química , Triazinas/química , Coloração e Rotulagem
18.
Nat Commun ; 10(1): 2222, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-31110237

RESUMO

Substrates associate and products dissociate from enzyme catalytic sites rapidly, which hampers investigations of their trajectories. The high-resolution structure of the native Hordeum exo-hydrolase HvExoI isolated from seedlings reveals that non-covalently trapped glucose forms a stable enzyme-product complex. Here, we report that the alkyl ß-D-glucoside and methyl 6-thio-ß-gentiobioside substrate analogues perfused in crystalline HvExoI bind across the catalytic site after they displace glucose, while methyl 2-thio-ß-sophoroside attaches nearby. Structural analyses and multi-scale molecular modelling of nanoscale reactant movements in HvExoI reveal that upon productive binding of incoming substrates, the glucose product modifies its binding patterns and evokes the formation of a transient lateral cavity, which serves as a conduit for glucose departure to allow for the next catalytic round. This path enables substrate-product assisted processive catalysis through multiple hydrolytic events without HvExoI losing contact with oligo- or polymeric substrates. We anticipate that such enzyme plasticity could be prevalent among exo-hydrolases.


Assuntos
Domínio Catalítico , Glucosidases/metabolismo , Modelos Moleculares , Proteínas de Plantas/metabolismo , Biocatálise , Cristalografia por Raios X , Ensaios Enzimáticos/métodos , Glucosidases/química , Glucosidases/isolamento & purificação , Glicosídeos/metabolismo , Hordeum/metabolismo , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Plântula/metabolismo , Especificidade por Substrato
19.
Bioconjug Chem ; 29(7): 2370-2381, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29878753

RESUMO

The severe side effects associated with the use of anthracycline anticancer agents continues to limit their use. Herein we describe the synthesis and preliminary biological evaluation of three enzymatically activatable doxorubicin-oligosaccharide prodrugs. The synthetic protocol allows late stage variation of the carbohydrate and is compatible with the use of disaccharides such as lactose as well as more complex oligosaccharides such as xyloglucan oligomers. The enzymatic release of doxorubicin from the prodrugs by both protease (plasmin) and human carboxylesterases (hCE1 and 2) was demonstrated in vitro and the cytotoxic effect of the prodrugs was assayed on MCF-7 breast cancer cells.


Assuntos
Doxorrubicina/uso terapêutico , Oligossacarídeos/química , Pró-Fármacos/síntese química , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Hidrolases de Éster Carboxílico/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Fibrinolisina/metabolismo , Humanos , Células MCF-7 , Pró-Fármacos/metabolismo
20.
PLoS One ; 13(5): e0198126, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29851976

RESUMO

Arbuscular Mycorrhiza and Root Nodule Symbiosis are symbiotic interactions with a high benefit for plant growth and crop production. Thus, it is of great interest to understand the developmental process of these symbioses in detail. We analysed very early symbiotic responses of Medicago truncatula root hair cells, by stimulation with lipochitinoligosaccharides specific for the induction of nodules (Nod-LCOs), or the interaction with mycorrhiza (Myc-LCOs). Intracellular micro electrodes were used, in combination with Ca2+ sensitive reporter dyes, to study the relations between cytosolic Ca2+ signals and membrane potential changes. We found that sulfated Myc- as well as Nod-LCOs initiate a membrane depolarization, which depends on the chemical composition of these signaling molecules, as well as the genotype of the plants that were studied. A successive application of sulfated Myc-LCOs and Nod-LCOs resulted only in a single transient depolarization, indicating that Myc-LCOs can repress plasma membrane responses to Nod-LCOs. In contrast to current models, the Nod-LCO-induced depolarization precedes changes in the cytosolic Ca2+ level of root hair cells. The Nod-LCO induced membrane depolarization thus is most likely independent of cytosolic Ca2+ signals and nuclear Ca2+ spiking.


Assuntos
Quitina/química , Polissacarídeos Fúngicos/química , Polissacarídeos Fúngicos/farmacologia , Medicago truncatula/efeitos dos fármacos , Micorrizas/química , Raízes de Plantas/citologia , Raízes de Plantas/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Medicago truncatula/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA